Thursday, August 1, 2013

Every MSAT's Response to Process Development



Reducing variability is the only thing the Manufacturing team can control.  Ways to do this involve getting more accurate probes, improving control algorithms, upgrading procedures, etc.

But there are limits. Probes are only so precise. Transmitter may discretize the signal and add error to the measurement. The cell culture may have intrinsic variability.

What makes for releasable lots are cell cultures executed within process specifications.  And measuring a process parameter's variability in relation to the process specification is the SPC metric: capability.

1fc1cbd2a59a0da04cb5e11abc816b77[1]

Process specifications are created by Process Development (PD). And at the lab-scale, it's their job to run DOE and explore the process space and select process specifications narrow enough to produce the right product, but wide enough that any facility can manufacture it.

It's tempting to select the ranges that produce the highest culture volumetric productivity.  But that would be a mistake if those specifications were too narrow relative to the process variability.  You may get 100% more productivity, but at large-scale be only able to hit those specifications 50% of the time resulting in a net 0% improvement.

The key is to pick specification limits (USL and LSL) that are wide so that the large-scale process is easy to execute.  And at large-scale, let the MSAT guys find the sweet-spot.

No comments: